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Abstract
The resistivities of liquid Mg–Al, Na–Cs, Ni–Ce, Li–Cd and Mg–Cd alloys were calculated.
The Faber–Ziman diffraction model and the Morgan–Howson–S̆aub ‘2kF’ scattering model
were used in calculations. The results obtained within these two models for the same alloy and
with use of the same set of parameters differ substantially, even for alloys that are not highly
resistive. It is possible in principle to achieve good agreement with experiment by means of
each of these two models; however we suggest that the ‘2kF’ scattering model is the appropriate
method of calculation of the electrical resistivity for liquid alloys because the quantum
interference effects should always be taken into account.

1. Introduction

Electrical resistivity of liquid alloys has been a subject of
interest for many years. In theoretical approaches mostly
the Faber–Ziman (FZ) [1, 2] model has been used [3–5];
however it includes quantum effects only in the first Born
approximation. In particular, it neglects multiple scattering
that leads to quantum interference. As was shown in [6], the
quantum interference has a strong effect on the resistivity of
binary alloys; therefore it must not be neglected in theoretical
calculations. Actually, for every disordered system with
resistivity greater than about 50 μ� cm the FZ model is
no longer valid and better quantum models should be used
(in some cases quantum interference gives a rather small
contribution to the resistivity even up to about 100 μ� cm but
it is more appropriate to use a quantum model).

In 1985 the ‘2kF’ scattering model was proposed by
Morgan, Howson and S̆aub [7] (it is also called the MHS̆
model). It was based on the quantum kinetic equation
and gave formulae for the resistivity that included the
quantum interference effect. This model allowed performing
calculations for highly resistive alloys, such as amorphous Ca–
Al or liquid K–Cl, in which the localization (in the Bergman
sense [8]) occurs [6, 9].

In this paper we present successful calculations of the
resistivity with use of the MHS̆ model for several liquid alloys

that were previously analyzed by means of the FZ model
(except for Mg–Al and Na–Cs for which some calculations
with the MHS̆ model were performed [10]). We also include
the Debye–Waller factor to take into account the temperature
dependence of the partial structure factors, which has usually
been neglected, except in the work [11].

2. ‘2kF’ scattering model

The resistivity in the ‘2kF’ scattering model is given by the
formula [9]

ρ = m∗
e

ne2τtr
, (1)

where the transport lifetime τtr is expressed as [7]

1

τtr
= 1

τFZ

1 + 1
2

τFZ
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Here τFZ is the transport lifetime and τ is the one-electron
lifetime (both taken from the FZ model), X = h̄/(τ EF) and
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The FZ model lifetimes for binary alloy are expressed as [6]

1

τFZ
= m∗

e�0

4π h̄3k3
F

∫ 2kF

0
dq λ(q)q3 (4)

1

τ
= m∗

e�0

2π h̄3kF

∫ 2kF

0
dq λ(q)q (5)

where �0 is the average volume per one atom in the system,
and

λ(q) =
2∑

α=1

2∑
β=1

√
cαcβ Sαβ(q)uα(q)uβ(q). (6)

In this equation ci stands for the number concentration of
the i th component, ui(q) are the screened pseudopotentials’
form factors and Si j are the Ashcroft–Langreth partial structure
factors [12].

3. Details of calculations

For calculation of the partial structure factors the algorithm
from the Waseda book [13] was used, corrected with
the Debye–Waller factor. Denoting the original Ashcroft–
Langreth factors given by the Waseda algorithm as S0

i j we
introduce the Debye–Waller factor following reference [11]:

Si j(q) = δi j + (S0
i j (q) − δi j) exp[−2W (q)] (7)

where

W (q) = 3h̄2q2T 2

2MkBθ3
D

∫ θD/T

0
dx

(
1

exp(x) − 1
+ 1

2

)
x, (8)

M is the average ion mass of the system and θD is the Debye
temperature.

Fitting the calculated structure factors for single-element
liquids to experimental data [13] we determined the hard
sphere diameters for use in further calculations.

In the resistivity calculations two model pseudopotentials
were used: the Heine–Abarenkov (HA) one for each element
and the Shaw one for Mg and Al only (tabulated in [14]).
Such a choice was made to present both a comparison of
using two different pseudopotentials, and the possibility of
using the MHS̆ model for calculation of the resistivity for
various alloys. At the present time there are available ab initio
pseudopotentials but they are as strongly parametrized as
simpler model pseudopotentials; therefore we decided to use
the second ones.

The unscreened form factor for HA pseudopotential is
expressed as [15]

ub(q) = − 1

�0ε0

q(Ze2 − ARc) cos(q Rc) + A sin(q Rc)

q3
.

(9)
Here Rc is a cutoff radius and A is the well depth, and these are
the only two parameters of this pseudopotential. Their values
were used as fitting parameters.

The screened pseudopotential form factor is expressed as
u(q) = ub(q)/ε(q), where ε(q) is a dielectric function taken
in the Hartree form [16]:

ε(q) = 1 + (εH(q) − 1) × (1 − G(q)) (10)

Table 1. Parameters used in calculations. The hard sphere diameters
σ were estimated from fitting to the experimental structure factors
(figure 1). Rc and A are the parameters of the pseudopotentials (a
lack of a value means that the pseudopotential was taken from [14]).
Debye temperatures θD were taken from [24]; for Ce the value was
interpolated.

Alloy, T (K) Element σ (au) Rc (au) A (au) θD (K)

(a) Al–Mg Al 4.87 — — 428
770 Mg 6.50 — — 400
(b) Al–Mg Al 4.87 3.3 1.5 428
770 Mg 6.50 1.5 0.35 400
(c) Li–Cd Li 5.32 4.5 0.095 344
820 Cd 5.22 3.0 0.6 209
(d) Mg–Cd Mg 5.46 1.5 0.35 300
970 Cd 5.22 3.0 0.6 209
(e) Na–Cs Na 6.50 3.8 0.26 158
400 Cs 9.35 7.5 0.14 38
(f) Ni–Ce Ni 4.24 2.66 0.26 450
1770 Ce 5.82 2.4 0.43 120

where εH(q) is the Hartree static dielectric function:

εH(q) = 1 + m∗
e e2

2πkFh̄2 Q2

(
1 − Q2

2Q
ln

∣∣∣∣1 + Q

1 − Q

∣∣∣∣ + 1

)
(11)

and Q = q/(2kF). G(q) is a correlation function for which
several forms were proposed [16]. For resistivity calculations
the Ishimaru–Utsumi [17] form was chosen.

The value of the mean density and the Debye temperature
for the alloys investigated were taken as linear functions of the
concentration. Although these are not precise dependences we
do not expect any substantial influence of this approximation
on the final results because the dependence of the results on
pseudopotentials is much stronger.

The density of the conduction electrons, the Fermi energy
and vector, and the volume per atom were taken from the free
electron model [18], and the packing fraction of the system was
calculated in the same way as in [11]:

η = 1

6

1

�0
π

[
σ 3

1 (1 − c) + σ 3
2 c

]
(12)

where σ1, σ2 stand for hard sphere diameters.
Effective electron masses were assumed to be equal to

unity (in atomic units), which should be true for most metals.
We do not expect significant deviations from this value and
even then the influence should be much smaller than that
arising from the choice of pseudopotential parameters.

We performed the fitting of the MHS̆ formula for the
resistivity (equations (1) and (2)) to the experimental data.

The only parameters used for fitting the curves were the
parameters of the pseudopotentials. Other values were taken
from tables or calculated. All values used in our calculations
are summarized in table 1.

4. Results

Hard sphere diameters were obtained from fitting experimental
and calculated structure factors for pure liquid elements. Both
experimental data and results of our calculations are presented

2
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Figure 1. Structure factors calculated for each element (line), with experimental values taken from [13] (crosses): (a) Al, (b) Mg, (c) Li,
(d) Cd, (e) Na, (f) Cs, (g) Ni, (h) Ce.

in figure 1, whereas the values of the hard sphere diameters
obtained are shown in table 1. The fittings were performed
to the data obtained in the temperatures as near as possible to
the ones applied in further calculations. The assumption that
diameters do not change with temperature was made. Although
this is only approximately true, it should not have a significant
effect on the resistivity calculations and affect the main point
of this work.

The results of our calculations are shown in figure 2,
together with experimental data taken from the literature. In
figures 2(a) and (b) (both for Al–Mg) we can see the difference
coming from using two different pseudopotentials: the Shaw
pseudopotential (2(a)) and the HA one (2(b)). We can see
that the latter gives a slightly better approximation. The lines
in figure 2 representing the results for the FZ model were
calculated with use of the same parameters as for plotting the

3
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Figure 2. Calculated values of the resistivity for several liquid alloys as a function of their composition: according to the MHS̆ model (solid
line), and to the FZ model (dotted line). Crosses denote experimental values taken from the literature: (a) Al–Mg [19] (calculations with use
of the Shaw pseudopotential), (b) Al–Mg [19] (calculations with use of the HA pseudopotential), (c) Li–Cd [20], (d) Mg–Cd [21],
(e) Na–Cs [22], (f) Ni–Ce [23]. Details are given in the text.

MHS̆ results. The difference between MHS̆ and FZ curves
shows that the contribution of the quantum interference may
be significant even for the resistivity of about 50 μ� cm. For
Li–Cd (figure 2(c)), Mg–Cd (figure 2(d)), Na–Cs (figure 2(e))
and Ni–Ce (figure 2(f)) a good agreement between the fitting
lines and the experimental values was achieved by means
of the MHS̆ model. The FZ curves calculated with use of
the same parameters apparently differ from the MHS̆ ones.
The largest relative difference between them is obtained for
Li–Cd, the resistivity of which is smaller than 90 μ� cm.
For Na–Cs alloy the difference between MHS̆ and FZ model
curves is much smaller and this suggests a rather small
contribution of quantum interference despite its high resistivity
(over 100 μ� cm).

5. Summary

There are two theoretical models which describe the electron
transport in disordered media such as liquid and amorphous

alloys: the FZ diffraction model and the MHS̆ model, also
known as the ‘2kF’ scattering one. Most authors explain
their experimental results by means of the FZ model. This
is possible because this model is very sensitive to the choice
of pseudopotential. However, this procedure is inappropriate
in our opinion. The FZ model is a one-scattering theory
whereas the conduction electron certainly is multiply scattered
because of a very short mean free path. The effects of ‘back-
scattering’ and quantum interference cannot be neglected. The
MHS̆ theory starts from the exact quantum transport equation
and treats the above-mentioned effects in an appropriate way.
We showed in our calculations that the MHS̆ model agrees
very well with available experimental data. The use of
this model is very simple when we already have the results
calculated from the FZ model. Only one step of calculations
is now required to obtain more reliable results, as we have
shown in our work. Therefore it is reasonable to always use
a physically sound model, i.e. the MHS̆ one, which takes
into account multiple scattering and quantum interference, to
explain electron transport properties of disordered systems.
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